### UNIT – III

# **Bivariate Linear Correlation**

(1) Performance of students in the Preliminary examination & the Final examination are given below. Calculate Karl Pearson's Coefficient of Correlation.

| Marks in<br>Prelims | Marks in<br>Final Exam |
|---------------------|------------------------|
| 70                  | 80                     |
| 50                  | 55                     |
| 65                  | 70                     |
| 63                  | 90                     |
| 60                  | 70                     |
| 81                  | 80                     |
| 45                  | 62                     |
| 86                  | 85                     |

### Solution:

| Marks in | Marks in   |                       |                       |      |
|----------|------------|-----------------------|-----------------------|------|
| Prelims  | Final Exam | <b>X</b> <sup>2</sup> | <b>y</b> <sup>2</sup> | xy   |
| (x)      | <b>(y)</b> |                       |                       |      |
| 70       | 80         | 4900                  | 6400                  | 5600 |
| 50       | 55         | 2500                  | 3025                  | 2750 |
| 65       | 70         | 4225                  | 4900                  | 4550 |
| 63       | 90         | 3969                  | 8100                  | 5670 |
| 60       | 70         | 3600                  | 4900                  | 4200 |
| 81       | 80         | 6561                  | 6400                  | 6480 |
| 45       | 62         | 2025                  | 3844                  | 2790 |

Vipul's<sup>TM</sup> Tutorial Workbook in Mathematical and Statistical Techniques

|                                                       |                                          |                                                                                                                                |                                                         | <b>_</b>            |  |  |
|-------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------|--|--|
| 86                                                    | 85                                       | 7396                                                                                                                           | 7225                                                    | 7310                |  |  |
| ∑ <b>x = 520</b>                                      | ∑ <b>y = 592</b>                         | ∑ <b>x</b> ² = 35176                                                                                                           | ∑ <b>y</b> ² = 44794                                    | ∑ <b>xy = 39350</b> |  |  |
| $\overline{\mathbf{x}} = \frac{\sum \mathbf{x}}{n} =$ | $\frac{520}{8} = 65, \ \overline{y} = 2$ | $\frac{\sum x}{n} = \frac{592}{8} = 74$                                                                                        |                                                         |                     |  |  |
|                                                       | r = —                                    | $\frac{\sum xy}{n} - \overline{x} \cdot \overline{y}$ $\sqrt{\frac{\sum x^2}{n} - (\overline{x})^2} \sqrt{\frac{\sum y^2}{n}}$ | $\frac{1}{2} - (\bar{y})^2$                             |                     |  |  |
|                                                       | =                                        | $\frac{\frac{39350}{8} - (65)}{\sqrt{\frac{35176}{8} - (65)^2}} \sim 10^{-10}$                                                 | $\frac{5) \cdot (74)}{\sqrt{\frac{44794}{8} - (74)^2}}$ |                     |  |  |
|                                                       | $=\frac{1}{\sqrt{2}}$                    | 4918.75 - 4<br>1397 - 4225 √55                                                                                                 | 4810<br>59.25 – 5476                                    |                     |  |  |
|                                                       | $=\frac{1}{\sqrt{1}}$                    | 108.75<br>$172\sqrt{123.25}$                                                                                                   |                                                         |                     |  |  |
|                                                       | = (13                                    | <u>108.75</u><br>3.115) (11.102)                                                                                               |                                                         |                     |  |  |
|                                                       | $=\frac{108.75}{145.59}$                 |                                                                                                                                |                                                         |                     |  |  |
|                                                       | = 0.'                                    | 75                                                                                                                             |                                                         |                     |  |  |
|                                                       | r = 0.7                                  | 75                                                                                                                             |                                                         |                     |  |  |

(2) The following data gives profits for shop I and shop II. Compute Karl Pearson's Coefficient of Correlation.

| Shop I | Shop II |
|--------|---------|
| 55     | 60      |
| 57     | 65      |
| 72     | 80      |
| 83     | 92      |
| 50     | 62      |
| 70     | 83      |
| 42     | 60      |
| 75     | 82      |

### Solution:

| Shop I<br>(x)                                                                                                     | Shop II<br>(y) | <b>X</b> <sup>2</sup> | <b>y</b> <sup>2</sup> | xy    |       |
|-------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|-----------------------|-------|-------|
| 55                                                                                                                | 60             | 3025                  | 3600                  | 3300  |       |
| 57                                                                                                                | 65             | 3249                  | 4225                  | 3705  |       |
| 72                                                                                                                | 80             | 5184                  | 6400                  | 5760  |       |
| 83                                                                                                                | 92             | 6889                  | 8464                  | 7636  | n = 8 |
| 50                                                                                                                | 62             | 2500                  | 3844                  | 3100  |       |
| 70                                                                                                                | 83             | 4900                  | 6889                  | 5810  |       |
| 42                                                                                                                | 60             | 1764                  | 3600                  | 2520  |       |
| 75                                                                                                                | 82             | 5625                  | 6724                  | 6150  |       |
| 504                                                                                                               | 584            | 33136                 | 43746                 | 37981 |       |
| $\overline{x} = \frac{\Sigma x}{n} = \frac{504}{8} = 63,  \overline{y} = \frac{\Sigma x}{n} = \frac{584}{8} = 73$ |                |                       |                       |       |       |

127

$$r = \frac{\frac{\sum xy}{n} - \bar{x} \cdot \bar{y}}{\sqrt{\frac{\sum x^2}{n} - (\bar{x})^2} \sqrt{\frac{\sum y^2}{n} - (\bar{y})^2}}$$
$$= \frac{\frac{37981}{8} - (63) (73)}{\sqrt{\frac{33136}{8} - (63)^2} \sqrt{\frac{43746}{8} - (73)^2}}$$
$$= \frac{4747.625 - 4599}{\sqrt{4142} - 3969} \sqrt{5468.25 - 5329}$$
$$= \frac{148.625}{\sqrt{173} \sqrt{139.25}}$$
$$= \frac{148.625}{(13.15) (11.80)}$$
$$= \frac{148.625}{155.21}$$
$$= 0.96$$

(3) Calculate Karl Pearson's Correlation coefficient for the following data:  $n = 20, \Sigma x = 240, \Sigma y = 480, \Sigma x^2 = 4720, \Sigma y^2 = 15200, \Sigma xy = 7060.$ Solution:

$$\bar{\mathbf{x}} = \frac{\sum \mathbf{x}}{n} = \frac{240}{20} = 12 \quad \bar{\mathbf{y}} = \frac{\sum \mathbf{x}}{n} = \frac{480}{20} = 24$$

$$\mathbf{r} = \frac{\frac{\sum \mathbf{xy}}{n} - \bar{\mathbf{x}} \cdot \bar{\mathbf{y}}}{\sqrt{\frac{\sum \mathbf{x}^2}{n} - (\bar{\mathbf{x}})^2} \sqrt{\frac{\sum \mathbf{y}^2}{n} - (\bar{\mathbf{y}})^2}}$$

$$= \frac{\frac{7060}{20} - (12) (24)}{\sqrt{\frac{4720}{20} - (12)^2} \sqrt{\frac{15200}{20} - (24)^2}}$$

$$= \frac{353 - 288}{\sqrt{236 - 144} \sqrt{760 - 576}}$$

$$= \frac{65}{\sqrt{92} \sqrt{184}}$$

$$= \frac{65}{9.59 \times 13.56}$$
$$= \frac{65}{130.0404}$$
$$= 0.50$$

(4) Calculate Karl Pearson's Correlation coefficient for the following data:

 $n = 10, \sum (X - \overline{X}) (Y - \overline{Y}) = 55, \sum (X - \overline{X})^2 = 60, \sum (Y - \overline{Y})^2 = 70$ Solution:

$$Cov(X, Y) = \frac{\sum(X - \overline{X}) (Y - \overline{Y})}{n} = \frac{55}{10} = 5.5$$
  

$$\sigma_x = \sqrt{\frac{\sum(X - \overline{X})^2}{n}} = \sqrt{\frac{60}{10}} = \sqrt{6} = 2.45$$
  

$$\sigma_y = \sqrt{\frac{\sum(Y - \overline{Y})^2}{n}} = \sqrt{\frac{70}{10}} = \sqrt{7} = 2.65$$
  

$$r = \frac{Cov(X, Y)}{\sigma_x \cdot \sigma_y} = \frac{5.5}{(2.45)(2.65)} = \frac{5.5}{6.48} = 0.85$$

### (5) Compute Karl Pearson's Coefficient of Correlation from the following data:

| Price<br>(in Rs.) | Demand<br>(in units) |
|-------------------|----------------------|
| 43                | 80                   |
| 56                | 65                   |
| 60                | 55                   |
| 55                | 60                   |
| 53                | 62                   |
| 63                | 52                   |
| 43                | 50                   |
| 49                | 80                   |

### Solution:

| Price                                                             | Demand                   |                                     |                       |       |       |
|-------------------------------------------------------------------|--------------------------|-------------------------------------|-----------------------|-------|-------|
| (in Rs.)                                                          | (in units)               | <b>x</b> <sup>2</sup>               | <b>y</b> <sup>2</sup> | xy    |       |
| (x)                                                               | (y)                      |                                     |                       |       |       |
| 43                                                                | 80                       | 1849                                | 6400                  | 3440  |       |
| 56                                                                | 65                       | 3136                                | 4225                  | 3640  |       |
| 60                                                                | 55                       | 3600                                | 3025                  | 3300  |       |
| 55                                                                | 60                       | 3025                                | 3600                  | 3300  | n = 8 |
| 53                                                                | 62                       | 2809                                | 3844                  | 3286  |       |
| 63                                                                | 52                       | 3969                                | 2704                  | 3276  |       |
| 43                                                                | 50                       | 1849                                | 2500                  | 2150  |       |
| 49                                                                | 80                       | 2401                                | 6400                  | 3920  |       |
| 422                                                               | 504                      | 22638                               | 32698                 | 26312 |       |
| $\overline{\mathbf{x}} = \frac{\sum \mathbf{x}}{n} = \frac{2}{n}$ | $\frac{422}{8}$ = 52.75, | $\overline{y} = \frac{\sum y}{n} =$ | $\frac{504}{8} = 63$  |       | 1     |

r

$$= \frac{\frac{\sum xy}{n} - \bar{x} \cdot \bar{y}}{\sqrt{\frac{\sum x^2}{n} - (\bar{x})^2} \sqrt{\frac{\sum y^2}{n} - (\bar{y})^2}}$$

$$= \frac{\frac{26312}{8} - (52.75)(63)}{\sqrt{\frac{22638}{8} - (52.75)^2} \sqrt{\frac{32698}{8} - (63)^2}}$$

$$= \frac{3289 - 3323.25}{\sqrt{2829.75 - 2782.5625} \sqrt{4087.25 - 3969}}$$

$$= \frac{-34.25}{\sqrt{47.1875} \sqrt{118.25}}$$

$$= \frac{-34.25}{(6.87)(10.87)}$$

$$= \frac{-34.25}{74.699}$$

$$= -0.46$$

(6) Ten Students are ranked in a personality contest according to performance in a first round 1 (R1) and round 2 (R2). Find Spearman's Rank Correlation <u>coefficient</u>.

| <b>R1</b> | R2 |
|-----------|----|
| 8         | 7  |
| 2         | 4  |
| 3         | 3  |
| 5         | 5  |
| 9         | 8  |
| 10        | 9  |
| 1         | 2  |
| 4         | 1  |
| 7         | 10 |
| 6         | 6  |

### Solution:

| R1 | R2 | d = R1 - R2 | d² |
|----|----|-------------|----|
| 8  | 7  | 1           | 1  |
| 2  | 4  | - 2         | 4  |
| 3  | 3  | 0           | 0  |
| 5  | 5  | 0           | 0  |
| 9  | 8  | 1           | 1  |
| 10 | 9  | 1           | 1  |
| 1  | 2  | - 1         | 1  |
| 4  | 1  | 3           | 9  |

| 7 | 10 | - 3    | 9                         |                   |
|---|----|--------|---------------------------|-------------------|
| 6 | 6  | 0      | 0                         |                   |
|   |    |        | 26                        | $= \sum d^2$      |
|   |    | n = 10 | )                         | <u>.</u>          |
|   |    | R = 1  | $-\frac{6\Sigma}{n(n^2)}$ | <u>d²</u><br>- 1) |
|   |    | = 1    | $-\frac{6}{10((1))}$      | × 26<br>0)² – 1)  |
|   |    | = 1    | $-\frac{6}{10(1)}$        | × 26<br>00 – 1)   |
|   |    | = 1    | $-\frac{26}{165}$         |                   |
|   |    | = 1    | - 0.15                    | 75                |
|   |    | = 0.   | 8425                      |                   |
|   |    |        |                           |                   |

# (7) The following data gives temperature in two cities for a week. Compute Spearman's Rank Correlation Coefficient:

| City A | City B |
|--------|--------|
| 38     | 39     |
| 33     | 38     |
| 39     | 45     |
| 44     | 52     |
| 40     | 39     |
| 39     | 39     |
| 40     | 45     |

### Solution:

| City A | City B       | R1  | R2  | đ              | d²   |  |
|--------|--------------|-----|-----|----------------|------|--|
| 38     | 39           | 6   | 5   | 1              | 1    |  |
| 33     | 38           | 7   | 7   | 0              | 0    |  |
| 39     | 45           | 4.5 | 2.5 | 2              | 4    |  |
| 44     | 52           | 1   | 1   | 0              | 0    |  |
| 40     | 39           | 2.5 | 5   | - 2.5          | 6.25 |  |
| 39     | 39           | 4.5 | 5   | - 0.5          | 0.25 |  |
| 40     | 45           | 2.5 | 2.5 | 0              | 0    |  |
|        |              |     |     | ∑ <b>d</b> ² = | 11.5 |  |
| -      | $m(m^2 - 1)$ |     |     |                |      |  |

Rank Frequency =  $\frac{m(m^2 - 1)}{12}$ 

$$4.5 \rightarrow 2 \quad \frac{2 \times 3}{12} = 0.5$$
$$2.5 \rightarrow 2 \quad \frac{2 \times 3}{12} = 0.5$$

Tutorial Workbook in Mathematical and Statistical Techniques

$$2.5 \rightarrow 2 \quad \frac{2 \times 3}{12} = 0.5$$

$$5 \quad \rightarrow 3 \quad \frac{3 \times 8}{12} = 2$$

$$n = 7 \quad \text{C.F.} = 3.5$$

$$R = 1 - \frac{6(\sum d^2 + \text{C.F.})}{n(n^2 - 1)}$$

$$= 1 - \frac{6(11 \cdot 5 + 3.5)}{7((7)^2 - 1)}$$

$$= 1 - \frac{6 \times 15}{10(49 - 1)}$$

$$= 1 - \frac{15}{56}$$

$$= 1 - 0.268$$

$$= 0.732$$

(8) The following data gives production (in tonnes) for two shifts in a factory for 8 days. Compute Spearman's Rank Correlation Coefficient:

| Shift I | Shift II |  |
|---------|----------|--|
| 46      | 42       |  |
| 63      | 46       |  |
| 46      | 49       |  |
| 47      | 49       |  |
| 40      | 46       |  |
| 46      | 43       |  |
| 52      | 44       |  |
| 50      | 48       |  |

### Solution:

| Shift I | Shift II | R1 | R2  | đ              | <b>d</b> <sup>2</sup> |
|---------|----------|----|-----|----------------|-----------------------|
| 46      | 42       | 6  | 8   | - 2            | 4                     |
| 63      | 46       | 1  | 4.5 | - 3.5          | 12.25                 |
| 46      | 49       | 6  | 1.5 | 4.5            | 20.25                 |
| 47      | 49       | 4  | 1.5 | 2.5            | 6.25                  |
| 40      | 46       | 8  | 4.5 | 3.5            | 12.25                 |
| 46      | 43       | 6  | 7   | - 1            | 1                     |
| 52      | 44       | 2  | 6   | - 4            | 16                    |
| 50      | 48       | 3  | 3   | 0              | 0                     |
|         |          | -  |     | ∑ <b>d</b> ² = | 72                    |

Rank Frequency = 
$$\frac{m(m^2 - 1)}{12}$$

$$6 \rightarrow 3 \qquad \frac{3 \times 8}{12} = 2$$

Tutorial Workbook in Mathematical and Statistical Techniques

$$4.5 \rightarrow 2 \quad \frac{2 \times 3}{12} = 0.5$$

$$1.5 \rightarrow 2 \quad \frac{2 \times 3}{12} = 0.5$$

$$\boxed{3}$$

$$n = 8 \quad \text{C.F.} = 3$$

$$R = 1 - \frac{6(\sum d^2 + \text{C.F.})}{n(n^2 - 1)}$$

$$= 1 - \frac{6(72 + 3)}{8(8^2 - 1)}$$

$$= 1 - \frac{6 \times 75}{8(64 - 1)}$$

$$= 1 - \frac{450}{504}$$

$$= 1 - 0.893$$

$$= 0.107$$

### 

## **Bivariate Linear Regression**

- (1) The following data gives the marks obtained by 10 students in two tests. Obtain the two regression lines and hence find:
  - (i) Most likely marks in test 1 of a student who has scored 75 marks in test 2.
  - (ii) Most likely marks in test 2 of a student who has scored 60 marks in test 1.

| Test 1 | Test 2 |
|--------|--------|
| 60     | 70     |
| 85     | 81     |
| 72     | 78     |
| 65     | 70     |
| 61     | 67     |
| 75     | 80     |
| 59     | 65     |
| 65     | 65     |
| 48     | 49     |
| 60     | 65     |

### Solution:

| Test 1 | Test 2 | <b>x</b> <sup>2</sup> | <b>y</b> <sup>2</sup> | xy   |
|--------|--------|-----------------------|-----------------------|------|
| (x)    | (у)    |                       | 5                     | 5    |
| 60     | 70     | 3600                  | 4900                  | 4200 |
| 85     | 81     | 7225                  | 6561                  | 6885 |
| 72     | 78     | 5184                  | 6084                  | 5616 |
| 65     | 70     | 4225                  | 4900                  | 4550 |
| 61     | 67     | 3721                  | 4489                  | 4087 |

Tutorial Workbook in Mathematical and Statistical Techniques

#### $\overline{y} = \frac{\sum y}{n}$ $=\frac{690}{10}$ ÿ = 69

$$b_{xy} = \frac{\frac{\sum xy}{n} - \overline{x} \cdot \overline{y}}{\frac{\sum y^2}{n} - (\overline{y})^2}$$
$$= \frac{\frac{45650}{10} - (65) (69)}{\frac{48410}{10} - (69)^2}$$
$$= \frac{4565 - 4485}{4841 - 4761}$$
$$= \frac{80}{80} = 1$$

$$b_{yx} = \frac{\frac{\sum xy}{n} - \overline{x} \cdot \overline{y}}{\frac{\sum x^2}{n} - (\overline{x})^2}$$
$$= \frac{\frac{45650}{10} - (65)(69)}{\frac{43190}{10} - (65)^2}$$
$$= \frac{4565 - 4485}{4319 - 4225}$$
$$= \frac{80}{94} = 0.85$$

VVV

To estimate x when y is 75.

We use regression line of x on y.

$$x - \overline{x} = b_{xy} (y - \overline{y})$$
  
 $x - 65 = 1 (75 - 69)$   
 $x = 65 + 6$   
 $x = 71$ 

To estimate y when x is 60. We use regression line of y on x.

$$y - \overline{y} = b_{yx} (x - \overline{x})$$
  

$$y - 69 = 0.85 (60 - 65)$$
  

$$y = 69 + 0.85 (-5)$$
  

$$y = 69 - 4.25$$
  

$$y = 64.75$$

- (2) The following data gives expenditure on Research and Development (X) and Profits (Y) of a company. Obtain:
  - (i) Probable profit when R & D expenditure is Rs. 150,000.
  - (ii) Probable expenditure on R & D when the company enjoys profit of Rs. 400,000.

| R & D expenditure<br>('000 Rs.) | Profit<br>('000 Rs.) |
|---------------------------------|----------------------|
| 22                              | 40                   |
| 30                              | 42                   |
| 25                              | 45                   |
| 31                              | 47                   |
| 27                              | 48                   |
| 33                              | 40                   |
| 28                              | 38                   |
| 28                              | 28                   |

### Solution:

| R & D<br>expenditure<br>('000 Rs.)<br>(x) | Profit<br>('000<br>Rs.)<br>(y) | <b>x</b> <sup>2</sup> | y²   | xy   |                                                     |
|-------------------------------------------|--------------------------------|-----------------------|------|------|-----------------------------------------------------|
| 22                                        | 40                             | 484                   | 1600 | 880  | n = 8                                               |
| 30                                        | 42                             | 900                   | 1764 | 1260 | $\overline{\mathbf{x}} = \frac{\sum \mathbf{x}}{n}$ |
| 25                                        | 45                             | 625                   | 2025 | 1125 | $=\frac{224}{8}$                                    |
| 31                                        | 47                             | 961                   | 2209 | 1457 | 8<br>= 28                                           |
| 27                                        | 48                             | 729                   | 2304 | 1296 | $\overline{y} = \frac{\sum y}{n}$                   |
| 33                                        | 40                             | 1089                  | 1600 | 1320 | $=\frac{328}{8}$                                    |
| 28                                        | 38                             | 784                   | 1444 | 1064 | 8                                                   |

# 28 28 784 784 784 $\bar{y}$ = 41 224 328 6356 13730 9186

$$b_{xy} = \frac{\frac{\sum xy}{n} - \overline{x} \cdot \overline{y}}{\frac{\sum y^2}{n} - (\overline{y})^2}$$
$$= \frac{\frac{9186}{8} - (28) (41)}{\frac{13730}{8} - (41)^2}$$
$$= \frac{1148.25 - 1148}{1716.25 - 1681}$$
$$= \frac{0.25}{35.25} = 0.007$$

To estimate x when y is 400000. We use regression line of x on y.

$$\begin{array}{ll} \mathbf{x} - \overline{\mathbf{x}} &= \mathbf{b}_{xy} \left( y - \overline{y} \right) \\ \mathbf{x} - 28 &= 0.007 \; (400 - 41) \\ \mathbf{x} &= 28 + 0.007 \; (359) \\ \mathbf{x} &= 28 + 2.513 \\ \mathbf{x} &= 30.513 \end{array}$$

To estimate y when x is 150000. We use regression line of y on x.

 $=\frac{0.25}{10.5}=0.24$ 

 $b_{yx} = \frac{\frac{\sum xy}{n} - \overline{x} \cdot \overline{y}}{\frac{\sum x^2}{n} - (\overline{x})^2}$ 

 $=\frac{\frac{9186}{8}-(28)\ (41)}{\frac{6356}{8}-(28)^2}$ 

 $=\frac{1148.25-114.8}{794.5-784}$ 

$$y - \overline{y} = b_{yx} (x - \overline{x})$$
  

$$y - 41 = 0.24 (150 - 28)$$
  

$$y = 41 + 0.24 (122)$$
  

$$y = 41 + 29.28$$
  

$$y = 70.28$$

(3) From the following data on the heights and weights of 1000 students, find:

(i) The weight of a student whose height is 150 cms.

(ii) The height of a student who weighs 70 kgs.:

|                  | Mean | Standard Deviation |
|------------------|------|--------------------|
| Height (in cms.) | 170  | 9                  |
| Weight (in kg)   | 55   | 4                  |
| r = 0.8          |      |                    |

### Solution:

$$b_{xy} = r \times \frac{\sigma_x}{\sigma_y} = 0.8 \times \frac{9}{4} = 0.8 \times 2.25 = 1.8$$

To find x when y is 70,

We use regression line of x on y.

$$\begin{aligned} x - \bar{x} &= b_{xy} (y - \bar{y}) \\ x - 170 &= 1.8 (70 - 55) \\ x &= 170 + 1.8 (15) \\ x &= 170 + 27 \\ x &= 197 \\ b_{yx} &= r \times \frac{\sigma_y}{\sigma_x} = 0.8 \times \frac{4}{9} = 0.8 \times 0.44 = 0.35 \end{aligned}$$

To find y when x is 150.

We use regression line of y on x.

$$y - \overline{y} = b_{yx} (x - \overline{x})$$
  

$$y - 55 = 0.35 (150 - 170)$$
  

$$y = 55 + 0.35 (-20)$$
  

$$y = 55 - 7$$
  

$$y = 48$$

(4) The following data gives the Marks in Preliminary Exam (X) and marks in Annual Exam (Y).

| · · · · · · · · · · · · · · · · · · · | x  | Y  |
|---------------------------------------|----|----|
| Average                               | 65 | 60 |
| S. D.                                 | 10 | 15 |
| Coefficient correlation 0.70          |    |    |

Obtain the two regression lines and estimate (i) the marks of a student in annual exam who has scored 70 in Preliminary Exam (ii) the marks of a student in Preliminary Exam who has scored 65 in annual exam. **Solution:** 

# $b_{xy} = r \times \frac{\sigma_x}{\sigma_y} = 0.7 \times \frac{10}{15} = 0.7 \times 0.67 = 0.467$

To find x when y is 65.

We use regression line of x on y.

$$\begin{aligned} \mathbf{x} - \overline{\mathbf{x}} &= \mathbf{b}_{xy} \left( \mathbf{y} - \overline{\mathbf{y}} \right) \\ \mathbf{x} - 65 &= 0.467 \ (65 - 60) \\ \mathbf{x} &= 65 + 0.467 \ (5) \\ \mathbf{x} &= 65 + 2.335 \\ \mathbf{x} &= 67.335 \approx 67 \ \text{marks} \\ \mathbf{b}_{yx} &= \mathbf{r} \times \frac{\sigma_{y}}{\sigma_{x}} = 0.7 \times \frac{15}{10} = 0.7 \times 1.5 = 1.05 \end{aligned}$$

To find y when x is 70.

We use regression line of y on x.

$$y - \overline{y} = b_{yx} (x - \overline{x})$$
  

$$y - 60 = 1.05 (70 - 65)$$
  

$$y = 60 + 1.05 (5)$$
  

$$y = 60 + 5.25$$
  

$$y = 65.25 \approx 65 \text{ marks}$$

(5) From the regression equations given below 3x + 2y - 26 = 06x + y - 31 = 0Obtain: Mean of x and y (i) y when x = 4(ii) x when y = 7(iii) Solution: 3x + 2y = 26..... (1) Multiplying by 2, 6x + 4y = 526x + y = 31..... (3) Subtracting (2) by (3) we get, 6x + 4y = 52Put y in (1) - 6x + y = 31 3x + 2(7) = 263y = 21 3x + 14 = 26y = 73x = 12(1)  $\bar{x} = 4$ ,  $\bar{v} = 7$ x = 4Let us assume. 3x + 2y = 26 as regression line of y on x. 2v = -3x + 26 $y = -\frac{3}{2}x + 13$  $b_{yx}$  = coefficient of x =  $-\frac{3}{2}$ . 6x + y = 31 as regression line of x on y. And, 6x = -y + 31 $x = -\frac{1}{6}y + 31$  $b_{xy}$  = coefficient of y =  $-\frac{1}{6}$ .  $-\pm \sqrt{b}$  b r

$$= \pm \sqrt{b_{yx} \cdot b_{xy}}$$
$$= -\sqrt{-\frac{3}{2} \cdot -\frac{1}{6}}$$

# $= -\sqrt{\frac{1}{4}}$ = -0.5

To find x when y = 7.

We use regression line of x on y.

$$\begin{aligned} x - \bar{x} &= b_{xy} (y - \bar{y}) \\ x - 4 &= -\frac{1}{6} (7 - 7) \\ x &= 4 - \frac{1}{6} (0) \\ x &= 4 - 0 \end{aligned}$$
(III) 
$$\begin{aligned} \bar{x} &= 4 \end{aligned} \qquad (II)$$

To find y when x = 4.

We use regression line of y on x.

VV

$$y - \overline{y} = b_{yx} (x - \overline{x})$$
$$y - 7 = -\frac{3}{2} (4 - 4)$$
$$y = 7 - \frac{1}{6} (0)$$
$$y = 7 - 0$$
$$\overline{y = 7}$$

(6) From the regression equations given below 2x + y - 8 = 0x + 5y - 13 = 0Obtain: Mean of X and Y (i) Coefficient of correlation (ii) Solution: 2x + y = 8..... (1) x + 5y = 13..... (2) Multiplying (1) by 5, 10x + 5y = 40Subtracting (3) by (2) we get, 10x + 5y = 40Put x in (1) x + 5y = 132(3) + y = 8(--) (--) (--)  $6 \times y = 8$ 9x = 27x = 3 y = 8 - 6v = 2 $\overline{\mathbf{x}} = 3, \ \overline{\mathbf{y}} = 2$ (1)Let us assume,

2x + y = 8 as regression line of x on y. 2x = -y + 8  $x = -\frac{1}{2}y + 4$   $b_{xy} = \text{coefficient of } y = -\frac{1}{2}.$ And, x + 5y = 13 as regression line of y on x. 5y = -x + 13  $y = -\frac{1}{5}x + \frac{13}{5}$   $b_{yx} = \text{coefficient of } x = -\frac{1}{5}.$   $r = \pm \sqrt{b_{xy} \cdot b_{yx}}$ 

Tutorial Workbook in Mathematical and Statistical Techniques

$$= -\sqrt{-\frac{1}{5} \cdot -\frac{1}{2}}$$
$$= -\sqrt{0.1}$$
$$r = -0.316$$

- (7) Two random variables have regression lines with equations:
  4x y 23 = 0
  3x 2y + 4 = 0
  Obtain:
  - (i) Mean of x and y

(ii) The coefficient of correlation and  $\sigma_y$ , if  $\sigma_x^2 = 12$ Solution:

Multiplying by (2),

Subtracting (3) by (2),

| 8x – 2y | = 46           | Put x in (1)   |
|---------|----------------|----------------|
| 3x-2y   | = -4           | 4(10) - y = 23 |
| (-) (+) | (+)            |                |
| 5x      | = 50           | 40 - y = 23    |
| x       | = 10           | y = 40 - 23    |
|         |                | y = 17         |
| x = 10, | $\bar{y} = 17$ |                |

Let us assume,

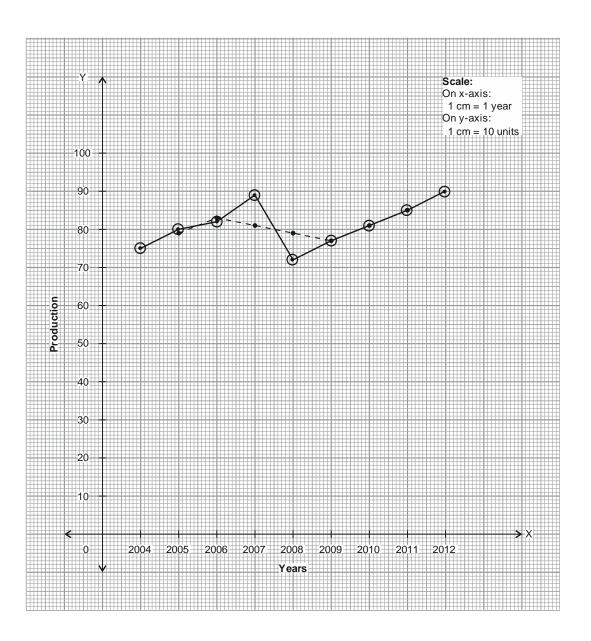
And,

4x - y = 23 as regression line of x on y. 4x = y + 23  $x = \frac{1}{4}y + \frac{23}{4}$   $b_{xy} = \text{coefficient of } y = \frac{1}{4}.$  3x - 2y = -4 as regression line of y on x. 2y = 3x + 4  $y = \frac{3}{2}x + 2$   $b_{yx} = \text{coefficient of } x = \frac{3}{2}.$   $r = \pm \sqrt{b_{yx} \times b_{xy}}$ 

Tutorial Workbook in Mathematical and Statistical Techniques

$$= \sqrt{\frac{3}{2} \times \frac{1}{4}}$$
$$= \sqrt{1.5 \times 0.25}$$
$$= \sqrt{0.375}$$
$$r = 0.6124$$
$$b_{xy} = r \times \frac{\sigma_x}{\sigma_y}$$
$$\frac{1}{4} = 0.6124 \times \frac{\sqrt{12}}{\sigma_y}$$
$$\frac{1}{4} = \frac{2.1214}{\sigma_y}$$
$$\sigma_y = 2.1214 \times 4$$
$$\sigma_y = 8.4856$$

# **Time Series Analysis**


(1) Compute 3 yearly moving averages for the following time series and plot the original values and trend values on a graph.

| Years | Production      |
|-------|-----------------|
| 10415 | (in 1000 units) |
| 2004  | 75              |
| 2005  | 80              |
| 2006  | 82              |
| 2007  | 89              |
| 2008  | 73              |
| 2009  | 77              |
| 2010  | 81              |
| 2011  | 85              |
| 2012  | 90              |

### Solution:

| Years | Production      | 3 yearly moving | 3 yearly moving |
|-------|-----------------|-----------------|-----------------|
| Icals | (in 1000 units) | totals          | averages        |
| 2004  | 75              | _               | _               |
| 2005  | 80              | 237             | 79              |
| 2006  | 82              | 251             | 83.67           |
| 2007  | 89              | 244             | 81.33           |
| 2008  | 73              | 239             | 79.67           |
| 2009  | 77              | 231             | 77              |
| 2010  | 81              | 243             | 81              |
| 2011  | 85              | 256             | 85.33           |

Tutorial Workbook in Mathematical and Statistical Techniques



# (2) Calculate trend values by method of moving averages of length 5 for the following time series:

| Years | Turnover    |  |
|-------|-------------|--|
| rears | (in crores) |  |
| 2001  | 52          |  |
| 2002  | 59          |  |
| 2003  | 63          |  |
| 2004  | 68          |  |
| 2005  | 72          |  |
| 2006  | 80          |  |
| 2007  | 82          |  |
| 2008  | 84          |  |
| 2009  | 89          |  |
| 2010  | 90          |  |
| 2011  | 91          |  |
| 2012  | 92          |  |

### Solution:

| Years | Turnover (in<br>crores) | 5 yearly moving<br>totals | 5 yearly moving<br>averages |
|-------|-------------------------|---------------------------|-----------------------------|
| 2001  | 52                      | -                         | -                           |
| 2002  | 59                      | -                         | _                           |
| 2003  | 63                      | 314                       | 62.8                        |
| 2004  | 68                      | 342                       | 68.4                        |
| 2005  | 72                      | 365                       | 73                          |
| 2006  | 80                      | 386                       | 77.2                        |
| 2007  | 82                      | 407                       | 81.4                        |
| 2008  | 84                      | 425                       | 85                          |
| 2009  | 89                      | 436                       | 87.2                        |
| 2010  | 90                      | 446                       | 89.2                        |
| 2011  | 91                      | _                         | _                           |
| 2012  | 92                      | _                         | -                           |

### (3) <u>Calculate the 4 yearly moving averages for the following Time Series.</u>

| Years | production<br>(Rs. in 00s) |
|-------|----------------------------|
| 2003  | 32                         |
| 2004  | 27                         |
| 2005  | 25                         |
| 2006  | 30                         |
| 2007  | 35                         |
| 2008  | 33                         |
| 2009  | 28                         |
| 2010  | 29                         |
| 2011  | 30                         |
| 2012  | 32                         |
| 2013  | 30                         |

### Solution:

| Years | production<br>(Rs. in 00s) | 4 yearly<br>moving<br>totals | Centered<br>totals | 4 yearly<br>moving<br>averages |
|-------|----------------------------|------------------------------|--------------------|--------------------------------|
| 2003  | 32                         | _                            | -                  | -                              |
| 2004  | 27                         | - 114                        | _                  | _                              |
| 2005  | 25                         | 117                          | 231                | 28.875                         |
| 2006  | 30                         | 123                          | 240                | 30                             |
| 2007  | 35                         | 126                          | 249                | 31.125                         |
| 2008  | 33                         |                              | 251                | 31.375                         |
|       |                            | 125                          |                    |                                |

154

Vipul's<sup>TM</sup> Tutorial Workbook in Mathematical and Statistical Techniques

| 2009 | 28 |     | 245 | 30.625 |
|------|----|-----|-----|--------|
|      |    | 120 |     |        |
| 2010 | 29 |     | 239 | 29.875 |
|      |    | 119 |     |        |
| 2011 | 30 |     | 240 | 30     |
|      |    | 121 |     |        |
| 2012 | 32 | -   | -   | _      |
|      |    |     |     |        |
| 2013 | 30 | _   | -   | _      |
|      |    |     |     |        |

(4) The following data gives rainfall in cms of a city for 8 years

| Years | Rainfall |
|-------|----------|
| 2008  | 50       |
| 2009  | 63       |
| 2010  | 85       |
| 2011  | 90       |
| 2012  | 75       |
| 2013  | 68       |
| 2014  | 53       |
| 2015  | 60       |

Fit a trend line by method of Least Squares and estimate rainfall for the year 2016.

### Solution:

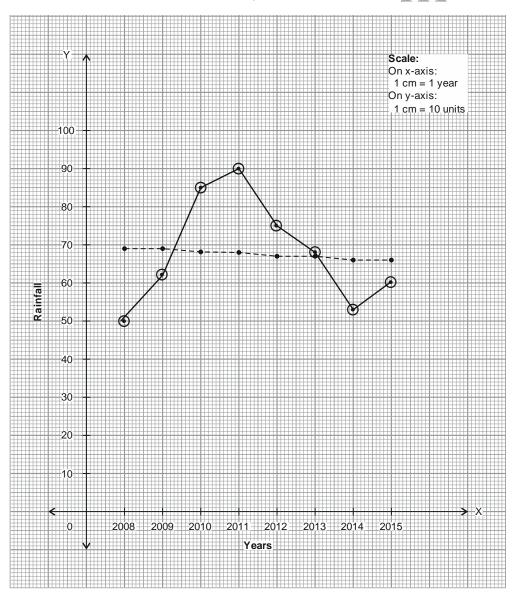
| Years | Rainfall | x = 2(yr - 2011.5) | <b>X</b> <sup>2</sup> | xy    | y = 68 - 0.27x |
|-------|----------|--------------------|-----------------------|-------|----------------|
| 2008  | 50       | - 7                | 49                    | - 350 | 69.89          |
| 2009  | 63       | - 5                | 25                    | - 315 | 69.35          |
| 2010  | 85       | - 3                | 9                     | - 255 | 68.81          |
| 2011  | 90       | - 1                | 1                     | - 90  | 68.27          |
| 2012  | 75       | 1                  | 1                     | 75    | 67.73          |
| 2013  | 68       | 3                  | 9                     | 204   | 67.19          |
| 2014  | 53       | 5                  | 25                    | 265   | 66.65          |
| 2015  | 60       | 7                  | 49                    | 420   | 66.11          |
| Total | 544      | 0                  | 168                   | - 46  |                |

Normal Equations:

$$\sum y = na + b\sum x$$
  

$$544 = 8a + b(0)$$
  

$$a = \frac{544}{8} = 68$$
  


$$\sum xy = a\sum x + b\sum x^{2}$$

V

$$-46 = a(0) + b(168)$$
  

$$\therefore b = \frac{-46}{168} = -0.27$$
  
Trend Line y = a + bx = 68 + (-0.27)x  
= 68 - 0.27x  
For year 2016, x = 2 (Year - 2011.5) = 2 (2016 - 2011.5)  
= 9  
Trend value y = 68 - 0.27x  
= 68 - 0.27 (9)  
= 68 - 2.43  
= 65.57

### Tutorial Workbook in Mathematical and Statistical Techniques



V

VV

(5) Given below are traffic offences committed in a city during 2003 to 2011. Fit a straight line and estimate traffic offences for 2010.

| Years | Traffic<br>Offences<br>('00s) |
|-------|-------------------------------|
| 2003  | 120                           |
| 2004  | 125                           |
| 2005  | 132                           |
| 2006  | 147                           |
| 2007  | 150                           |
| 2008  | 123                           |
| 2009  | 135                           |
| 2010  | 141                           |
| 2011  | 142                           |

### Solution:

| Years | Traffic<br>Offences<br>('00s) | x = Year - 2007 | <b>x</b> <sup>2</sup> | xy    | y = 135 +<br>1.97x |
|-------|-------------------------------|-----------------|-----------------------|-------|--------------------|
| 2003  | 120                           | - 4             | 16                    | - 480 | 127.12             |
| 2004  | 125                           | - 3             | 9                     | - 375 | 129.09             |
| 2005  | 132                           | - 2             | 4                     | - 264 | 131.06             |
| 2006  | 147                           | - 1             | 1                     | - 147 | 133.03             |
| 2007  | 150                           | 0               | 0                     | 0     | 135                |
| 2008  | 123                           | 1               | 1                     | 123   | 136.97             |
| 2009  | 135                           | 2               | 4                     | 270   | 138.94             |
| 2010  | 141                           | 3               | 9                     | 423   | 140.91             |
| 2011  | 142                           | 4               | 16                    | 568   | 142.88             |
| Total | 1215                          | 0               | 60                    | 118   |                    |

### **Normal Equations:**

|                | Σy   | = na + b∑x                      |
|----------------|------|---------------------------------|
|                | 1215 | = 9a + (0) b                    |
|                | ∴ a  | $=\frac{1215}{9}=135$           |
|                | ∑xy  | $= a\sum x + b\sum x^2$         |
|                | 118  | = a(0) + b(60)                  |
|                | ∴ b  | $=\frac{118}{60}=1.97$          |
| Trend Line     | У    | = a + bx = 135 + 1.97x          |
| For year 2010, | x    | = Year - 2007 = 2010 - 2007 = 3 |
| Trend value    | У    | = 135 + 1.97x                   |
|                |      | = 135 + 1.97(3)                 |
|                |      | = 135 + 5.91                    |
|                |      | = 140.91                        |

# (6) Determine the Seasonal Indices by Method of Simple Averages from the following Time Series:

| Years | Sale (1000 units) |                       |     |     |  |  |
|-------|-------------------|-----------------------|-----|-----|--|--|
|       | $\mathbf{Q}_1$    | <b>Q</b> <sub>2</sub> | Q₃  | Q4  |  |  |
| 2006  | 120               | 110                   | 105 | 150 |  |  |
| 2007  | 140               | 140                   | 125 | 180 |  |  |
| 2008  | 135               | 170                   | 150 | 200 |  |  |
| 2009  | 140               | 180                   | 160 | 220 |  |  |
| 2010  | 135               | 230                   | 180 | 240 |  |  |

Solution:

| Years   | Sale (1000 units) |                       |                |            |     |  |
|---------|-------------------|-----------------------|----------------|------------|-----|--|
|         | $\mathbf{Q}_1$    | <b>Q</b> <sub>2</sub> | Q <sub>3</sub> | <b>Q</b> 4 |     |  |
| 2006    | 120               | 110                   | 105            | 150        |     |  |
| 2007    | 140               | 140                   | 125            | 180        | 1   |  |
| 2008    | 135               | 170                   | 150            | 200        |     |  |
| 2009    | 140               | 180                   | 160            | 220        |     |  |
| 2010    | 135               | 230                   | 180            | 240        |     |  |
| Total   | 670               | 830                   | 720            | 990        | 1   |  |
| Average | 134               | 166                   | 144            | 198        | 642 |  |

Grand Average  $=\frac{642}{4} = 160.5$ 

Seasonal Indices =  $\frac{\text{Quarterly Average}}{\text{Grand Average}} \times 100$   $Q_1 = \frac{134}{160.5} \times 100$   $Q_2 = \frac{166}{160.5} \times 100$   $Q_3 = \frac{144}{160.5} \times 100$   $Q_4 = \frac{198}{160.5} \times 100$ = 83.49 = 103.43 = 89.72 = 123.66

160

| Years | Der            | Demand (in lakh Rs.) |            |            |  |  |  |  |  |
|-------|----------------|----------------------|------------|------------|--|--|--|--|--|
| Tears | $\mathbf{Q}_1$ | $\mathbf{Q}_2$       | <b>Q</b> ₃ | <b>Q</b> 4 |  |  |  |  |  |
| 2005  | 129            | 135                  | 158        | 144        |  |  |  |  |  |
| 2006  | 130            | 132                  | 160        | 165        |  |  |  |  |  |
| 2007  | 143            | 145                  | 142        | 171        |  |  |  |  |  |
| 2008  | 128            | 123                  | 155        | 155        |  |  |  |  |  |
| 2009  | 110            | 105                  | 175        | 130        |  |  |  |  |  |

(7) Compute the seasonal components by the method of seasonal indices:

#### Solution:

| Years   | Der            | Demand (in lakh Rs.)  |                   |            |     |  |  |  |
|---------|----------------|-----------------------|-------------------|------------|-----|--|--|--|
| ICars   | $\mathbf{Q}_1$ | <b>Q</b> <sub>2</sub> | Q <sub>3</sub>    | <b>Q</b> 4 |     |  |  |  |
| 2005    | 129            | 135                   | 158               | 144        |     |  |  |  |
| 2006    | 130            | 132                   | 160               | 165        |     |  |  |  |
| 2007    | 143            | 145                   | 142               | 171        |     |  |  |  |
| 2008    | 128            | 123                   | 155               | 155        |     |  |  |  |
| 2009    | 110            | 105                   | 175               | 130        |     |  |  |  |
| Total   | 640            | 640                   | 790               | 765        |     |  |  |  |
| Average | 128            | 128                   | 158               | 153        | 567 |  |  |  |
| Gı      | rand Av        | erage                 | $=\frac{567}{4}=$ | 141.75     |     |  |  |  |

Seasonal Indices =  $\frac{\text{Quarterly Average}}{\text{Grand Average}} \times 100$ 

 $Q_{1} = \frac{128}{141.75} \times 100 \quad Q_{2} = \frac{128}{141.75} \times 100 \quad Q_{3} = \frac{158}{141.75} \times 100 \quad Q_{4} = \frac{153}{141.75} \times 100$  $= 90.29 \quad = 90.29 \quad = 111.46 \quad = 107.94$ 

VV

## **Index Numbers**

(1) Construct simple and weighted price index numbers for the following data by average of price relatives and aggregative method.

|       | P                         | Price |         |  |  |  |
|-------|---------------------------|-------|---------|--|--|--|
| Comm. | Base Current<br>year year |       | Weights |  |  |  |
| А     | 50                        | 60    | 20      |  |  |  |
| В     | 73                        | 80    | 10      |  |  |  |
| C     | 20                        | 35    | 25      |  |  |  |
| D     | 45                        | 50    | 15      |  |  |  |
| E     | 60                        | 79    | 30      |  |  |  |

Solution:

|       | Р                                 | rice                    |                |                                                             |          |                          |                           |
|-------|-----------------------------------|-------------------------|----------------|-------------------------------------------------------------|----------|--------------------------|---------------------------|
| Comm. | Base<br>year<br>(P <sub>0</sub> ) | Current<br>year<br>(P1) | Weights<br>(w) | $\mathbf{i} = \frac{\mathbf{P}_1}{\mathbf{P}_0} \times 100$ | iw       | $\mathbf{P}_0\mathbf{w}$ | $\mathbf{P}_1 \mathbf{w}$ |
| А     | 50                                | 60                      | 20             | 120                                                         | 2400     | 1000                     | 1200                      |
| В     | 73                                | 80                      | 10             | 109.59                                                      | 1095.9   | 730                      | 800                       |
| С     | 20                                | 35                      | 25             | 175                                                         | 4375     | 500                      | 875                       |
| D     | 45                                | 50                      | 15             | 111.11                                                      | 1666.65  | 675                      | 750                       |
| E     | 60                                | 79                      | 30             | 131.67                                                      | 3950.1   | 1800                     | 2370                      |
| Total | 248                               | 304                     | 100            | 647.37                                                      | 13487.65 | 4705                     | 5995                      |

Simple Average of Price Relatives:

$$I = \frac{\sum i}{k} = \frac{647.37}{5} = 129.474$$

Simple Aggregate Method:

I = 
$$\frac{\sum P_1}{\sum P_0} \times 100 = \frac{304}{248} \times 100 = 122.58$$

Weighted Average of Price Relatives:

$$I = \frac{\sum iw}{\sum w} = \frac{13487.65}{100} = 134.8765$$

Weighted Aggregate Method:

I = 
$$\frac{\sum P_1 w}{\sum P_0 w} \times 100 = \frac{5995}{4705} \times 100 = 127.42$$

- (2) Construct Laspeyre's, Paasche's, Fisher's, Dorbish Boweley's & Marshall Edgeworth Price Index Numbers from the following Data:

| Comm  | Base  | Year | Current Year |      |  |
|-------|-------|------|--------------|------|--|
| Comm. | Price | Qty. | Price        | Qty. |  |
| А     | 45    | 20   | 25           | 22   |  |
| В     | 45    | 25   | 35           | 30   |  |
| С     | 62    | 15   | 20           | 20   |  |
| D     | 35    | 10   | 15           | 12   |  |
| E     | 30    | 5    | 30           | 7    |  |

#### Solution:

|       | Base          | Year          | Currer            | nt Year |                       |          |                       |                            |
|-------|---------------|---------------|-------------------|---------|-----------------------|----------|-----------------------|----------------------------|
| Comm. | Price         | Qty.          | Price             | Qty.    | <b>p</b> o <b>q</b> o | $p_0q_1$ | <b>p</b> 1 <b>q</b> 0 | $\mathbf{p}_1\mathbf{q}_1$ |
|       | ( <b>p</b> 0) | ( <b>q</b> ₀) | (p <sub>1</sub> ) | (q1)    |                       |          |                       |                            |
| А     | 45            | 20            | 25                | 22      | 900                   | 990      | 500                   | 550                        |
| В     | 45            | 25            | 35                | 30      | 1125                  | 1350     | 275                   | 1050                       |
| С     | 62            | 15            | 20                | 20      | 930                   | 1240     | 300                   | 400                        |
| D     | 35            | 10            | 15                | 12      | 350                   | 420      | 150                   | 180                        |
| E     | 30            | 5             | 30                | 7       | 150                   | 210      | 150                   | 210                        |
|       |               |               |                   | Total   | 3455                  | 4210     | 1975                  | 2390                       |

Laspeyre's Price Index Number:

$$I_{L} = \frac{\sum p_{1}q_{0}}{\sum p_{0}q_{0}} \times 100$$
$$= \frac{1975}{3455} \times 100 = 57.16$$

Paasche's Price Index Number:

$$I_{\rm P} = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$$
$$= \frac{2390}{4210} \times 100 = 56.76$$

Fisher's Price Index Number:

$$\begin{split} I_{\rm F} &= \sqrt{I_{\rm L} \times I_{\rm P}} \\ &= \sqrt{57.16 \times 56.76} \\ &= \sqrt{3244.4016} = 56.96 \end{split}$$

Dorbish Bowley's Price Index Number:

$$I_{DB} = \frac{I_{L} + I_{P}}{2}$$
$$= \frac{57.16 + 56.76}{2}$$
$$= 56.96$$

Marshall Edgeworth's Price Index Number:

$$I_{ME} = \frac{\sum p_1 q_0 + \sum p_1 q_1}{\sum p_0 q_0 + \sum p_0 q_1} \times 100$$
$$= \frac{1975 + 2390}{3455 + 4210} \times 100$$
$$= \frac{4365}{7655} \times 100 = 56.95$$

(3) Construct Laspeyre's, Paasche's, Fisher's and Dorbish Bowley's price Index Numbers from the following Data and test them for Factor Reversal.

| Comm. | Base<br>Price | Current<br>Price |    |    |
|-------|---------------|------------------|----|----|
| А     | 35            | 40               | 15 | 18 |
| В     | 45            | 50               | 25 | 27 |
| С     | 50            | 52               | 10 | 12 |
| D     | 25            | 30               | 15 | 16 |
| E     | 30            | 30               | 20 | 20 |

#### Solution:

|       | Base             | Current    | Base             | Current        |                       |                            |                            |                            |
|-------|------------------|------------|------------------|----------------|-----------------------|----------------------------|----------------------------|----------------------------|
| Comm. | Price            | Price      | Quantity         | Quantity       | <b>p</b> o <b>q</b> o | $\mathbf{p}_0\mathbf{q}_1$ | $\mathbf{p}_1\mathbf{q}_0$ | $\mathbf{p}_1\mathbf{q}_1$ |
|       | $\mathbf{p}_{0}$ | <b>p</b> 1 | $\mathbf{q}_{0}$ | $\mathbf{q}_1$ |                       |                            |                            |                            |
| А     | 35               | 40         | 15               | 18             | 525                   | 630                        | 600                        | 720                        |
| В     | 45               | 50         | 25               | 27             | 1125                  | 1215                       | 1250                       | 1350                       |
| С     | 50               | 52         | 10               | 12             | 500                   | 600                        | 520                        | 624                        |
| D     | 25               | 30         | 15               | 16             | 375                   | 400                        | 450                        | 480                        |
| E     | 30               | 30         | 20               | 20             | 600                   | 600                        | 600                        | 600                        |
| L     | 1                | 1          | L                | Total          | 3125                  | 3445                       | 3420                       | 3774                       |

Laspeyre's Price Index Number:

$$I_{L} = \frac{\sum p_{1}q_{0}}{\sum p_{0}q_{0}} \times 100$$
$$= \frac{3420}{3125} \times 100 = 109.44$$

Paasche's Price Index Number:

$$I_{P} = \frac{\sum p_{1}q_{1}}{\sum p_{0}q_{1}} \times 100$$
$$= \frac{3774}{3445} \times 100 = 109.55$$

Fisher's Price Index Number:

$$\begin{split} I_{\rm F} &= \sqrt{I_{\rm L} \times I_{\rm P}} \\ &= \sqrt{109.44 \times 109.55} \\ &= \sqrt{11989.152} = 109.49 \end{split}$$

Dorbish Bowley's Price Index Number:

$$I_{DB} = \frac{I_L + I_P}{2}$$
$$= \frac{109.44 + 109.55}{2}$$
$$= \frac{218.99}{2} = 109.495$$

V

(4) Construct Laspeyre's, Paasche's, Fisher's and Marshall Edgeworth price index numbers and check which satisfies Time Reversal Test.

| Comm. | Base  | Year | Current Year |      |  |
|-------|-------|------|--------------|------|--|
| comm. | Price | Qty. | Price        | Qty. |  |
| А     | 15    | 15   | 18           | 16   |  |
| В     | 20    | 10   | 22           | 15   |  |
| С     | 18    | 14   | 20           | 18   |  |
| D     | 12    | 13   | 14           | 7    |  |

#### Solution:

|       | Base       | Year       | Curren     | nt Year        |                            |                            |                            |                            |
|-------|------------|------------|------------|----------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Comm. | Price      | Qty.       | Price      | Qty.           | $\mathbf{p}_0\mathbf{q}_0$ | $\mathbf{p}_0\mathbf{q}_1$ | $\mathbf{p}_1\mathbf{q}_0$ | $\mathbf{p}_1\mathbf{q}_1$ |
|       | <b>p</b> 0 | <b>q</b> o | <b>p</b> 1 | $\mathbf{q}_1$ |                            |                            |                            |                            |
| А     | 15         | 15         | 18         | 16             | 225                        | 240                        | 270                        | 288                        |
| В     | 20         | 10         | 22         | 15             | 200                        | 300                        | 220                        | 330                        |
| С     | 18         | 14         | 20         | 18             | 252                        | 324                        | 280                        | 360                        |
| D     | 12         | 13         | 14         | 7              | 156                        | 84                         | 182                        | 98                         |
|       |            |            |            | Total          | 883                        | 948                        | 952                        | 1076                       |

Laspeyre's Price Index Number:

$$I_{L} = \frac{\sum p_{1}q_{0}}{\sum p_{0}q_{0}} \times \frac{\sum p_{0}q_{1}}{\sum p_{1}q_{1}}$$
$$= \frac{952}{853} \times \frac{948}{1076} = 1.007$$

Paasche's Price Index Number:

$$I_{P} = \frac{\sum p_{1}q_{1}}{\sum p_{0}q_{1}} \times \frac{\sum p_{0}q_{0}}{\sum p_{1}q_{0}}$$
$$= \frac{1076}{948} \times \frac{833}{952} = 0.993$$

Fisher's Price Index Number:

$$\begin{split} I_{\rm F} &= \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0} \times \frac{\sum p_1 q_1}{\sum p_0 q_1}} \times \sqrt{\frac{\sum p_0 q_1}{\sum p_1 q_1}} \times \frac{\sum p_0 q_0}{\sum p_1 q_0} \\ &= \sqrt{\frac{952}{853} \times \frac{1076}{948}} \times \sqrt{\frac{948}{1076} \times \frac{833}{952}} \\ &= 1 \end{split}$$

Marshall Edgeworth's Price Index Number:

$$I_{\rm ME} = \frac{\sum p_1(q_0 + q_1)}{\sum p_0(q_0 + q_1)} \times \frac{\sum p_0(q_1 + q_0)}{\sum p_1(q_1 + q_0)} = 1$$

 $\therefore$  Fisher's and Marshall Edgeworth's Price Index Number satisfies Time Reversal Test with value equal to 1.

(5) Calculate chain base index number for the following data.

| Years | Profits<br>(in lakh Rs.) |                         |    |    |    |  |  |  |
|-------|--------------------------|-------------------------|----|----|----|--|--|--|
| Tours | 2010                     | 010 2011 2012 2013 2014 |    |    |    |  |  |  |
| А     | 40                       | 45                      | 48 | 45 | 50 |  |  |  |
| В     | 25                       | 28                      | 29 | 28 | 32 |  |  |  |
| С     | 35                       | 32                      | 36 | 37 | 41 |  |  |  |

Solution:

Link Relative =  $\frac{\text{Current Year Price}}{\text{Previous Year Price}} \times 100$ 

## Link Relatives:

| Years | Α      | В      | С      | Average L. R. | CBI    |
|-------|--------|--------|--------|---------------|--------|
| 2010  | 100    | 100    | 100    | 100           | 100    |
| 2011  | 112.5  | 112    | 91.43  | 105.31        | 105.31 |
| 2012  | 106.67 | 103.57 | 112.5  | 107.58        | 113.29 |
| 2013  | 93.75  | 96.55  | 102.78 | 97.69         | 110.67 |
| 2014  | 111.11 | 114.29 | 110.81 | 112.07        | 124.03 |

Chain Base Index Number:

 $CBI = \frac{Link Relative of Current Year \times CBI of Previous Year}{100}$ 



(6) Construct chain base index number for the series given below:

| Years | Cost of<br>Living Index<br>Number |
|-------|-----------------------------------|
| 2002  | 100                               |
| 2003  | 126                               |
| 2004  | 129                               |
| 2005  | 136                               |
| 2006  | 140                               |
| 2007  | 145                               |
| 2008  | 151                               |
| 2009  | 160                               |
| 2010  | 162                               |
| 2011  | 170                               |
| 2012  | 175                               |

## Solution:

| Years | Cost of<br>Living Index<br>Number | Link Relative | Chain Base<br>Index Number |
|-------|-----------------------------------|---------------|----------------------------|
| 2002  | 100                               | 100           | 100                        |
| 2003  | 126                               | 126           | 126                        |
| 2004  | 129                               | 102.38        | 128.99                     |
| 2005  | 136                               | 105.43        | 135.99                     |
| 2006  | 140                               | 102.94        | 139.98                     |
| 2007  | 145                               | 103.57        | 144.97                     |
| 2008  | 151                               | 104.14        | 150.97                     |

 $Vipul's^{ extsf{TM}}$  Tutorial Workbook in Mathematical and Statistical Techniques

| 2009               | 160 | 105.96 | 159.97 |  |  |
|--------------------|-----|--------|--------|--|--|
| 2010               | 162 | 101.25 | 161.97 |  |  |
| 2011               | 170 | 104.94 | 169.97 |  |  |
| 2012               | 175 | 102.94 | 174.97 |  |  |
| Cumment Veen Drive |     |        |        |  |  |

Link Relative =  $\frac{\text{Current Year Price}}{\text{Previous Year Price}} \times 100$ 

Chain Base Index Number:

 $CBI = \frac{Link Relative of Current Year \times CBI of Previous Year}{100}$ 

(7) Shift the base year of the following series to 2008.

| Years | Index Nos. |
|-------|------------|
| 2006  | 100        |
| 2007  | 115        |
| 2008  | 120        |
| 2009  | 132        |
| 2010  | 150        |
| 2011  | 160        |
| 2012  | 164        |
| 2013  | 170        |
| 2014  | 182        |

#### Solution:

| Years | Index Nos. | New Index No. |
|-------|------------|---------------|
| 2006  | 100        | 83.33         |
| 2007  | 115        | 95.83         |
| 2008  | 120        | 100           |
| 2009  | 132        | 110           |
| 2010  | 150        | 125           |
| 2011  | 160        | 133.33        |
| 2012  | 164        | 136.67        |
| 2013  | 170        | 141.67        |
| 2014  | 182        | 151.67        |
|       |            |               |

New Index No. =  $\frac{\text{Old Index No.}}{\text{Index No. of New Base Year}} \times 100$ 

(8) Construct cost of living index number for the following data by family budget method.

| Group           | Weights (W) | Index No. (I) |
|-----------------|-------------|---------------|
| Food            | 40          | 185           |
| Fuel & Lighting | 25          | 120           |
| Clothing        | 25          | 130           |
| House Rent      | 5           | 140           |
| Miscellaneous   | 5           | 120           |

### Solution:

| Group           | Weights (W) | Index No. (I) | iw    |
|-----------------|-------------|---------------|-------|
| Food            | 40          | 185           | 7400  |
| Fuel & Lighting | 25          | 120           | 3000  |
| Clothing        | 25          | 130           | 3250  |
| House Rent      | 5           | 140           | 700   |
| Miscellaneous   | 5           | 120           | 600   |
|                 | 100         |               | 14950 |

Cost of Living Index Number by Family Budget Method:

$$=\frac{\sum iw}{\sum w} = \frac{14950}{100} = 149.5$$

(9) Construct cost of living index numbers for the year 2010 by aggregative expenditure method.

| Commodity | Price per unit |      | Quantity |  |
|-----------|----------------|------|----------|--|
|           | 2010           | 2015 | in 2010  |  |
| А         | 60             | 65   | 25       |  |
| В         | 80             | 90   | 20       |  |
| C         | 20             | 25   | 10       |  |
| D         | 40             | 45   | 25       |  |
| E         | 50             | 55   | 10       |  |

Solution:

|           | Price per unit |            | Quantity         |                             |                            |
|-----------|----------------|------------|------------------|-----------------------------|----------------------------|
| Commodity | 2010           | 2015       | in 2010          | $\mathbf{p}_1 \mathbf{q}_0$ | $\mathbf{p}_0\mathbf{q}_0$ |
|           | рo             | <b>p</b> 1 | $\mathbf{q}_{0}$ |                             |                            |
| А         | 60             | 65         | 25               | 1625                        | 1500                       |
| В         | 80             | 90         | 20               | 1800                        | 1600                       |
| С         | 20             | 25         | 10               | 250                         | 200                        |
| D         | 40             | 45         | 25               | 1125                        | 1000                       |
| E         | 50             | 55         | 10               | 550                         | 500                        |
|           |                |            |                  | 5350                        | 4800                       |

Cost of Living Index Number:

 $=\frac{5350}{4800}\times100=111.458$ 

(10) Construct cost of living index numbers for 2000 by family budget method.

| Crown         | Price |      | Expenses |  |
|---------------|-------|------|----------|--|
| Group         | 2000  | 2005 | (in %)   |  |
| Food          | 90    | 120  | 40       |  |
| Light & Fuel  | 30    | 40   | 10       |  |
| Clothing      | 40    | 40   | 15       |  |
| Rent          | 40    | 40   | 15       |  |
| Miscellaneous | 20    | 25   | 20       |  |

## Solution:

176

|               | Pr             | ice            | Expenses |                                  |         |
|---------------|----------------|----------------|----------|----------------------------------|---------|
| Group         | 2000           | 2005           | (in %)   | $I = \frac{p_1}{p_0} \times 100$ | iw      |
|               | $\mathbf{p}_0$ | $\mathbf{p}_1$ | w        | 1.                               |         |
| Food          | 90             | 120            | 40       | 133.33                           | 5333.2  |
| Light & Fuel  | 30             | 40             | 10       | 133.33                           | 1333.3  |
| Clothing      | 40             | 40             | 15       | 100                              | 1500    |
| Rent          | 40             | 40             | 15       | 100                              | 1500    |
| Miscellaneous | 20             | 25             | 20       | 125                              | 2500    |
| <b>I</b>      |                |                | 100      |                                  | 12166.5 |

Cost of Living Index Number by Family Budget Method:

$$=\frac{\sum iw}{\sum w} = \frac{12166.5}{100} = 121.665$$

# **Discrete Probability Distributions**

- (1) The probability that a student selected at random from a group of students is Gujarati is 1/3. If 5 students are selected from that group find the probability that
  - (i) At least one is a Gujarati
  - (ii) 3 or more are Gujarati
  - (iii) Exactly 4 are Gujarati

## Solution:

$$n = 5, p = \frac{1}{3}, q = \frac{2}{3}$$

$$P(X = x) = nC_{x} p^{x}q^{n-x}$$

$$= {}^{5}C_{x} \left(\frac{1}{3}\right)^{x} \left(\frac{2}{3}\right)^{5-x}$$
(i)
$$P(X \ge 1) = 1 - P(X < 1) = 1 - P(X = 0)$$

$$= 1 - {}^{5}C_{0} \left(\frac{1}{3}\right)^{0} \left(\frac{2}{3}\right)^{5} = 1 - \left[1 \times 1 \times \frac{32}{243}\right]$$

$$= 1 - \frac{32}{243} = \frac{211}{243} = 0.8683$$
(ii)
$$P(3 \text{ or more}) = 1 - P(X \ge 3) = 1 - P(X < 3)$$

$$= 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$$

$$= 1 - \left[{}^{5}C_{0} \left(\frac{1}{3}\right)^{0} \left(\frac{2}{3}\right)^{5} + {}^{5}C_{1} \left(\frac{1}{3}\right)^{1} \left(\frac{2}{3}\right)^{4} + {}^{5}C_{2} \left(\frac{1}{3}\right)^{2} \left(\frac{2}{3}\right)^{3}\right]$$

$$= 1 - \left[(1) (1) \left(\frac{32}{243}\right) + (5) \left(\frac{1}{3}\right) \left(\frac{16}{81}\right) + \left(\frac{5 \times 4}{2}\right) \left(\frac{1}{9}\right) \left(\frac{8}{27}\right)\right]$$

$$= 1 - \left[\frac{32}{243} + \frac{80}{243} + \frac{80}{243}\right]$$

$$= 1 - \left[\frac{192}{243} = \frac{51}{243}$$

$$= 0.2099$$
(iii)
$$P(X = 4) = {}^{5}C_{4} \left(\frac{1}{3}\right)^{4} \left(\frac{2}{3}\right)^{1} = (5) \left(\frac{1}{81}\right) \left(\frac{2}{3}\right) = \frac{10}{243} = 0.04115$$

- (2) It is observed that, on an average one person out five likes coffee. If 4 persons are selected at random find the probability that
  - (i) At the most one likes coffee
  - (ii) Exactly 2 likes coffee
  - (iii) At least 2 likes coffee

## Solution:

$$n = 4, p = \frac{1}{5}, q = \frac{4}{5}$$

$$P(X = x) = {}^{n}C_{x} p^{x}q^{n-x}$$

$$= {}^{4}C_{x} \left(\frac{1}{5}\right)^{x} \left(\frac{4}{5}\right)^{4-x}$$
(i)
$$P(X \le 1) = P(X = 0) + P(X = 1)$$

$$= {}^{4}C_{0} \left(\frac{1}{5}\right)^{0} \left(\frac{4}{5}\right)^{4} + {}^{4}C_{1} \left(\frac{1}{5}\right)^{1} \left(\frac{4}{5}\right)^{3}$$

$$= (1) (1) \left(\frac{256}{625}\right) + (4) \left(\frac{1}{5}\right) \left(\frac{64}{125}\right)$$

$$= \frac{256}{625} + \frac{256}{625} = \frac{512}{625} = \underline{0.8192}$$
(ii)
$$P(X = 2) = {}^{4}C_{2} \left(\frac{1}{5}\right)^{2} \left(\frac{4}{5}\right)^{2}$$

$$= (6) \left(\frac{1}{25}\right) \left(\frac{16}{25}\right) = \frac{96}{625} = \underline{0.1536}$$
(iii)
$$P(X \ge 2) = 1 - P(X < 2)$$

$$= 1 - [P(X = 0) + P(X = 1)]$$

$$= 1 - [P(X = 0) + P(X = 1)]$$

$$= 1 - [\frac{256}{625} + \frac{256}{625}] = 1 - \frac{512}{625}$$

$$= 1 - 0.8192$$

$$= \underline{0.1808}$$

## (3) If mean and variance of binomial distribution is 4 & 2 respectively. Find

- (i) Probability of 6 successes
- (ii) Probability of less than 2 successes

### Solution:

Mean = np = 4 Var = npq = 2  
npq = 2  
4q = 2  

$$q = \frac{1}{2}, p = \frac{1}{2}, n = 8$$
  
 $P(X = x) = {}^{n}C_{x} p^{x}q^{n-x}$   
(i)  $P(X = 6) = {}^{8}C_{6} (\frac{1}{2})^{6} (\frac{1}{2})^{2} = (\frac{8 \times 7}{2}) (\frac{1}{64}) (\frac{1}{4}) = \frac{7}{64} = 0.109375$   
(ii)  $P(X < 2) = P(X = 0) + P(X = 1)$   
 $= {}^{8}C_{0} (\frac{1}{2})^{0} (\frac{1}{2})^{8} + {}^{8}C_{1} (\frac{1}{2})^{1} (\frac{1}{2})^{7}$   
 $= (1) (1) (\frac{1}{256}) + (8) (\frac{1}{2}) (\frac{1}{128})$   
 $= \frac{1}{258} + \frac{8}{256}$   
 $= \frac{1+8}{256}$   
 $= \frac{9}{256}$   
 $= 0.03515625$ 

- (4) The average number of incoming calls in at a telephone switch board per minute is 3. Find the probability that during a given minute,
  - (i) 2 or more calls are received
  - (ii) At least one call is received
  - (iii) Exactly 4 calls are received

(Hint  $e^{-3} = 0.0498$ )

## Solution:

m = 3,

$$P(X = x) = \frac{e^{-m} m^{x}}{x!} = \frac{e^{-3} 3^{x}}{x!} \qquad x = 0, 1, 2, 3$$
(i)
$$P(X \ge 2) = 1 - P(X < 2) = 1 - [P(X = 0) + P(X = 1)]$$

$$= 1 - \left[\frac{e^{-3} (3)^{0}}{0!} + \frac{e^{-3} 3^{1}}{1!}\right]$$

$$= 1 - \left(\frac{0.0498 (1)}{(1)} + \frac{0.0498 (3)}{1}\right)$$

$$= 1 - (0.0498 + 0.1494)$$

$$= 1 - 0.1992 = \underline{0.8008}$$
(ii)
$$P(X \ge 1) = 1 - P(X < 1) = 1 - P(X = 0)$$

$$= 1 - \frac{e^{-3} (3)^{0}}{0!}$$

$$= 1 - 0.0498$$

$$= \underline{0.9502}$$
(iii)
$$P(X = 4) = \frac{e^{-3} (3)^{4}}{4!} = \frac{(0.0498) (81)}{4 \times 3 \times 2}$$

$$= (0.006225) (27)$$

$$= \underline{0.168075}$$

- (5) It is observed that on an average 5 items manufactured on a machine per day are defectives. Find the probability that on a particular day there are
  - (i) No defectives
  - (ii) Exactly 3 defective
  - (iii) At most two defectives
  - (Hint  $e^{-5} = 0.00673$ )

#### Solution:

m = 5,

$$P(X = x) = \frac{e^{-m} m^{x}}{x!} = \frac{e^{-5} 5^{x}}{x!} \qquad x = 0, 1, 2, 3, 4, 5$$

(i) 
$$P(X = 0) = \frac{e^{-5} (5)^0}{0!} = \frac{0.00673 \times 1}{1} = \underline{0.00673}$$

(ii) 
$$P(X = 3) = \frac{e^{-5} (5)^3}{3!} = \frac{0.00673 \times 125}{6} = \frac{0.84125}{6} = \frac{0.140208}{6}$$

Tutorial Workbook in Mathematical and Statistical Techniques

### (iii)

iii) 
$$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$$
$$= \frac{e^{-5} (5)^0}{0!} + \frac{e^{-5} (5)^1}{1!} + \frac{e^{-5} (5)^2}{2!}$$
$$= \frac{0.00673 \times 1}{1} + \frac{0.00673 \times 5}{1} + \frac{0.00673 \times 25}{2}$$
$$= 0.00673 + 0.03365 + 0.084125$$
$$= 0.124505$$

(6) From the past experience it is found that demand for certain product follows Poisson distribution with mean 4 units per week. If certain shop keeps 6 units during particular week, find probability that demand will exceed supply during that week. (Hint  $e^{-4} = 0.0183$ )

#### Solution:

$$\begin{split} P(X > 6) &= ? \\ P(X = x) &= \frac{e^{-m} m^x}{x!} = \frac{e^{-4} 4^x}{x!} & x = 0, 1, \dots ... \\ P(X > 6) &= 1 - P(X \le 6) \\ &= 1 - \begin{bmatrix} P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \\ &+ P(X = 4) + P(X = 5) + P(X = 6) \\ &= 1 - \begin{bmatrix} \frac{e^{-4} (4)^0}{0!} + \frac{e^{-4} (4)^1}{1!} + \frac{e^{-4} (4)^2}{2!} + \frac{e^{-4} (4)^3}{3!} + \frac{e^{-4} (4)^4}{4!} \\ &+ \frac{e^{-4} (4)^5}{5!} + \frac{e^{-4} (4)^6}{6!} \end{bmatrix} \\ &= 1 - \begin{bmatrix} \frac{0.0183 (1)}{1} + \frac{0.0183 (4)}{1} + \frac{0.0183 (16)}{2} + \frac{0.0183 (40)}{6} \\ &+ \frac{0.0183 (256)}{24} + \frac{0.0183 (1024)}{120} + \frac{0.0183 (4096)}{720} \end{bmatrix} \\ &= 1 - (0.0183 + 0.0732 + 0.1464 + 0.1952 + 0.1952 + \\ & 0.15616 + 0.1041) \\ &= 1 - 0.888567 \end{split}$$

= 0.111433

- (7) The probability that a person is allergic to a certain drug is 0.001. out of 2000 individuals who are administered the drug, find the probability that
  - (i) Exactly 3 get the allergy

- (ii) More than 2 get the allergy
- (iii) None get the allergy
- (Hint  $e^{-2} = 0.1353$ )

### Solution:

$$m = np = 2000 \times 0.001 = 2$$

$$P(X = x) = \frac{e^{-m} m^{x}}{x!} = \frac{e^{-2} 2^{x}}{x!}$$

$$x = 0, 1, \dots, 2000$$

(i) 
$$P(X = 3) = \frac{e^{-2} 2^3}{3!} = \frac{0.1353 \times 8}{6} = \underline{0.1804}$$

(ii) 
$$P(X > 2) = 1 - P(X \le 2)$$
$$= 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$$
$$= 1 - \left[\frac{e^{-2} 2^{0}}{0!} + \frac{e^{-2} 2^{1}}{1!} + \frac{e^{-2} 2^{2}}{2!}\right]$$
$$= 1 - \left[\frac{0.1353 \times 1}{1} + \frac{0.1353 \times 2}{1} + \frac{0.1353 \times 4}{2}\right]$$
$$= 1 - [0.1353 + 0.2706 + 0.2706]$$
$$= 1 - 0.6765$$
$$= 0.3235$$
(iii) 
$$P(X > 2) = \frac{e^{-2} 2^{0}}{0!} = \frac{0.1353 \times 1}{1} = 0.1353$$

- (8) The probability that a car passing through a particular junction meets with an accident is 0.00005. Among 10000 cars that pass through that junction on a day, what is the probability that
  - (i) Exactly 2 cars meet with accident
  - (ii) No cars meet with accident
  - (iii) At least one car meets with accident

(Hint  $e^{-0.5} = 0.607$ )

## Solution:

 $m = np = 10000 \times 0.00005 = 0.5$ 

# $P(X = x) = \frac{e^{-m} m^{x}}{x!} = \frac{e^{-0.5} 0.5^{x}}{x!} \qquad x = 0, 1, \dots, 10000$

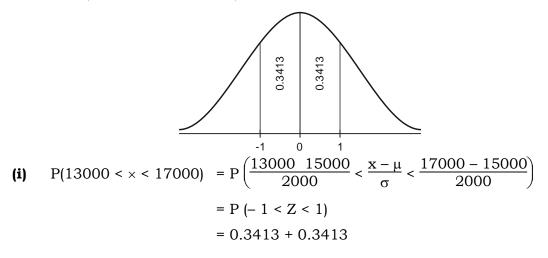
(i) 
$$P(X = 2) = \frac{e^{-0.5} (0.5)^2}{2!} = \frac{0.607 \times 0.25}{2} = \frac{0.075875}{2}$$

(ii) 
$$P(X = 0) = \frac{e^{-0.5} (0.5)^0}{0!} = \frac{0.607 \times 1}{1} = 0.607$$

(iii) 
$$P(X \ge 1) = 1 - P(X < 1)$$

$$= 1 - [P(X = 0)]$$
$$= 1 - \frac{e^{-0.5} (0.5)^{0}}{0!}$$
$$= 1 - 0.607$$
$$= 0.393$$

- (9) The income of group of 1000 people is normally distributed with mean 15000 and standard deviation Rs. 2000. Find
  - (i) Number of people with income between 13000 and 17000
  - (ii) Percentage of people with income less than 19000.
  - (iii) Proportion of people with income more than 13000


P(0 < z < 1) = 0.3413

P(0 < z < 2) = 0.4772

#### Solution:

X: Income of group of people

 $X \sim N (\mu = 15000, \sigma = 2000)$ 



$$= 0.6826$$
  
Number = N × Prob = 1000 × 0.6826  

$$= 682.6 = 683$$
(ii)  

$$P(X < 19000) = P\left(\frac{x - \mu}{\sigma} < \frac{19000 - 15000}{2000}\right)$$

$$= P(z < 2)$$

$$= 0.4772 + 0.5$$

$$= 0.9772$$
  
Number = N × Prob = 1000 × 0.9712  

$$= 977.2 = 977$$
(iii)  

$$P(X > 13000) = P\left(\frac{x - \mu}{\sigma} > \frac{13000 - 15000}{2000}\right)$$

$$= P(z > -1)$$

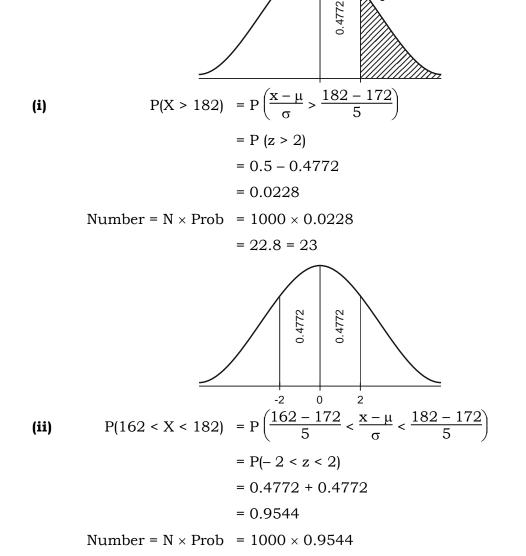
$$= 0.3413 + 0.5$$

$$= 0.8413$$

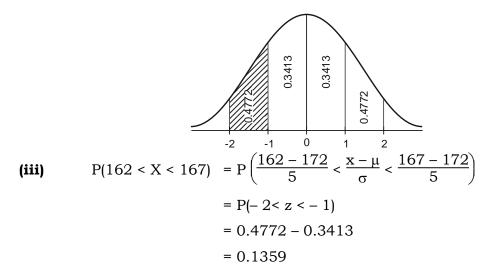
- (10) The heights of a group of 1000 people is normally distributed with mean 172 cms. and standard deviation 5 cms. Find
  - (i) Number of people with height greater than 182cms.
  - (ii) Percentage of people with heights between 162 & 182cms.



(iii) Proportion of people with heights between 162 & 167cms.


0

Hint: P(0 < z < 2) = 0.4772P(0 < z < 1) = 0.3413


#### Solution:

X: Height

X ~ N ( $\mu$  = 172,  $\sigma$  = 5)



= 954.4 = 954



**(11)**10000 candidates appeared for a certain examination. The mean scores were 60 with standard deviation 5. Assuming the scores to be normally distributed, find

(i) The minimum marks of top 25% of the students

(ii) The maximum marks of the bottom 25% of the students

## Solution:

X: Candidates appeared

X ~ N (μ = 60, σ = 5)

To find minimum marks of top 25% of the students, we compute  $Q_3$ .

 $Q_3 = \mu + 0.675 \sigma$ 

 $:: Q_3 = 60 + 0.675 \times 5 = 63.375 \approx 64$ 

 $\therefore$  the minimum marks of top 25% of the students is 64.

To find maximum marks of bottom 25% of the students, we compute  $Q_1$ .

 $Q_1 = \mu - 0.675 \sigma$ 

 $\therefore Q_1 = 60 - 0.675 \times 5 = 56.625 \approx 57$ 

 $\therefore$  the maximum marks of bottom 25% of the students is 57.

